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Three problems 
 
My choice of three problems, ordered in increasing difficulty. 
The first is elementary, but the last is a very difficult problem. 
The three problems deal with relatively simple geometric configurations but the answers and 
the solutions are surprising, therefore they are challenging. 
 
 

1.   With two parallelograms 
 
I  is a point which does not belong to the sides of a parallelogram ABCD . IB  intersects 
AD  at E  and CD  at F . ID  intersects AB  at G  and CB  at H . J  is the fourth vertex 
of the parallelogram AGJE . Show that J  lays on the line IC . 
 
This problem is elementary but without any other indication it is challenging, even for a good 
secondary student. 
An elementary solution requires only Thales, but there is a simpler solution using 
homotheties. 
 
 

2.   The bicycle's wheel 
 
Find the locus of the center of a bicycle wheel touching the floor and two corner walls. 
 
I just like this problem and it is not very difficult to solve. 
If it is easy to guess the perimeter of the locus, the locus itself is less obvious. 
Remark: I did not find a reasonably simple and short proof of the converse; nevertheless we 
may admit the result by continuity. 
 
 

3.   Sixteen centers of incircles and excircles  
       ( women's agrégation  -  France  -  1926 )  
  
Four concyclic points define four triangles; what is the configuration of the sixteen 
centers of their incircles and excircles? 
 
This is a beautiful but very difficult problem. This surprising configuration is easy to find... 
after tedious constructions! Using the perpendicularity of the bisectors of an angle makes the 
constructions easier and gives an indication for the solution. 
The proof does not need sophisticated tools, but it is nevertheless an arduous task to achieve 
it; the high number of points involved makes the reasoning tricky. 
 



With two parallelograms 

I  is a point which does not belong to the sides of a parallelogram ABCD . IB  intersects 
AD  at E  and CD  at F . ID  intersects AB  at G  and CB  at H . J  is the fourth vertex 
of the parallelogram AGJE . Show that J  lays on the line IC . 

 

1   With so many parallel lines, Thales is obviously involved. In fact no other tool is required. 
By Thales theorem, using parallel lines AD  and BC  (resp. AB  and DC ) with secants IB  

and ID , we get  
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From these equalities follows  IGIFIHIEIDIB  ==   and then  
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Now by the converse of Thales theorem we have EG  and FH  parallel. 

Let 1J  (resp. 2J ) be the intersection of IC  with EJ  (resp. GJ ). Again by Thales theorem we 

get, using parallel lines BC  and GJ  with secants IC  and IF ,  
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and using parallel lines DC  and EJ  with secants IC  and IH ,  
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Taking in account that the two first fractions are equal, we get 21 = IJIJ , which means 

JJJ == 21 , and we are done: J  lays on IC . 

 
  
 
With I  inside ABCD  the  
diagram looks "simpler".  
 
 
 
 
 

 
2   A simpler but less elementary solution uses homothecies ( 1J  and 2J  are unnecessary). 

Let 1h  (resp. 2h ) be the homothecy with center I  which maps B  on E  and H  on D  (resp. 

F  on B  and D  on G ). 2112 == hhhhh   has I  as center and maps H  on G  and F  on E , 

thus the lines EG  and FH  are parallel. 
Now h  maps HC  on GJ  and FC  on EJ , therefore it maps C  on J  and we are done. 



The bicycle's wheel 

Find the locus of the center of a bicycle wheel touching the floor and two corner walls. 
 
Let ),,(0, zyx  be a cartesian coordinate system, ),,(   the center of the wheel, and r  its 

radius. If the wheel remains tangent to one of the coordinate axes, the locus of its center is 
obviously a quarter circle in a plane perpendicular to that axis, at the distance r  from O  (see 

last diagram). All the points of the three quarter circles are the distance 2r  from O . Let us 
show that this always holds. 
The wheel touches the coordinate planes as shown below and its plane intersects the axes at 
points ,0,0)(aA , ,0)(0,bB  and )(0,0,cC , where cba ,,  are positive. 

 

Let abcrzqypx =  be the equation of the plane )(ABC . Expressing that the plane goes 

through A , B  and C  gives the conditions rcqbpaabc === , thus bcp = , acq = , abr = . 

The distance from O  to this plan is equal to   
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Let I  be the point where C  intersects AB , and CH=  the distance from C  to line AB . 

By Thales in the triangles CHI  and COI  we get   
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The volume of the tetrahedron OABC ,   
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Now we have   
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 , and the same holds for 2  and 2 . 

Then   22222 2== rO      and   is on the sphere with center O  and radius 2r . 

 
All coordinates of   are less than or equal to r , thus the locus is 
included in the cube with edge r  constructed on the coordinate 
axes (one vertex at O  and three edges on the axes). 
Finally the locus of the wheel's center is the part of the sphere 
limited by three quarter circles with radius r .  
 
Remark: I did not find a reasonably simple and short proof of the converse; nevertheless we 
may admit the result by continuity (every point of the sphere and inside the cube is center of a 
circle tangent to the coordinate planes). 



Sixteen centers of incircles and excircles 

Four concyclic points define four triangles; what is the configuration of the sixteen 
centers of their incircles and excircles? 
 
Lemma 1:  Let A  , B , C  and D  be four points on a circle with center O . 
Then there are two perpendicular lines   and   which verify the property: 

For any couple of arcs with distinct ends like BC  and AD with respective midpoints M  and 
N , the line MN  is parallel to   or  . 

Proof (left diagram): In the complex plane with origin O  the length unit is the radius of  , 
and we denote dcba ,,,  the arguments of DCBA ,,,  respectively. Then, )( mod , the 

argument of N  (resp. M ) is 
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Let   (resp.  ) be the line with argument  
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  where k  is even (resp. odd). 

This definition is independent from the choice of the two arcs above, and one of these lines is 
collinear to 



MN.  The same holds for the other couples of arcs and their midpoints.   

 

Lemma 2:  Let I  and J  be the centers of two circles tangent to the sides of a triangle ABC  
with circumcircle  . Then the line IJ  goes through one vertex (for example A ) and 
intersects   again at a point M  equidistant to I , J , B  and C . 

Proof (right diagram): Two of the three sides of triangle ABC  are common tangents of same 
nature to the circles with centers I  and J , thus they intersect at a point of IJ , and this point 
is therefore one of the vertices of ABC  (point A  on the diagram). 

Moreover IJ  is one of the bisectors of ABC  and M  is the midpoint of an arc BC 
(inscribed angle). Thus M  lays on the perpendicular bisector D  of segment BC , and by 
definition on IJ . 

Let 1M  be the midpoint of IJ . Knowing that IBJ  and ICJ  are right angles, we have the 

equidistance of 1M  to I , J , B  and C , hence 1M  lays on D . Recalling that 1M  lays on IJ , 

two cases are possible: 

a) if DIJ = , we have 1== MDIJM  , thus M  is the midpoint of IJ , 

b) if DIJ = , this line is the interior bisector of ABC  and 
ABIMACCBIMBCMBI  ==  (inscribed angle) MIBABIBAI  ==  



(exterior angle). Hence the triangle BMI  is isosceles and similarly for BMJ  because IBJ  is 
rectangular. 
Finally MJMBMI == , and the same holds for C . 
 

Corollary:  A , B , C  and D  being four concyclic points, the midpoint M  of an arc BC  is 
the center of a rectangle whose: 
- vertices are the centers of circles tangent to the three sides of the triangles ABC  and DCB , 
- diagonals lay on the lines AM  and DM , 
- sides are parallel to   and  . 

Proof (left diagram): Let I  and J  (resp. I   and J  ) be the centers laying on AM  (resp. 
DM ). By lemma 2 the point M  is equidistant from the six points JICBJI ,,,,, , thus we 

have the rectangle, its vertices and its diagonals. 
At last, if N  is the midpoint of an arc AD, the line MN  is a bisector of AMD  (inscribed 
angle) and is, by lemma 1, parallel to   or  . 
 
Conclusion: Let us focus on the subset of the incenter and excenters of one of the triangles, 

for example dC  for ABC . 

Trough dCI   let us draw I  (resp. I  ) parallel to   (resp.  ). I  being the common point 

of three bisectors of the triangle, by associating each of them with I  and I  , we get three 

rectangles such as the one defined in the corollary. 

Among the vertices of these rectangles, three points, one from aC , one from bC  and one from 

cC  come then on I ; the same happens on I . Therefore we get four lines parallel to  , 

with four points, one from each subset, on each line, and the same with  . 

Finally the sixteen points belong to the perimeters of two rectangles with parallel sides: 
  one, inside  , has the incenters as vertices, 
  the other, outside  , has four excenters as vertices (the ones which are on the interior 
bisectors of the convex quadrilateral) and the remaining eight excenters are the intersections 
of the sides of the two rectangles. 

 
 
 
 
Remark: 
The two rectangles become 
squares if and only if the 
convex quadrilateral is 
itself a square or has one 
diagonal as axis of 
symmetry. Each mirror 
symmetry of the quadrila-
teral is preserved on the 
whole diagram. 
 
 


