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The purpose of this text is to answer some questions that arise in connexion with kaleidocycles:
What properties must tetrahedra have, so that continous and twistable rings can be built from
them? How can the rotation of such a ring be described mathematically? For what number
of tetrahedra exist kaleidocycles? In addition we want to briefly describe some special cases of
kaleidocycles.

Regular kaleidocycles

First we restrict our considerations to kaleidocycles consisting of regular tetrahedra.
I. Let A,B,C,D be the vertices of a regular
tetrahedron. Let P be the midpoint of the edge
[AB], and Q the midpoint of the edge [CD].
Furthermore let M be the midpoint of [PQ]
(then M is also the center of gravity of the tetra-
hedron). It holds:

AB ⊥ PQ ⊥ CD ⊥ AB. (1)

By s we denote the side length of the tetrahe-
dron. Let m be the height of the faces (equilat-
eral triangles). Let h := PQ. Then we have(s

2

)2
+ h2 = m2 = s2 −

(s
2

)2

and it follows

s = h
√

2. (2)
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II. Let n ∈ N, n ≥ 8. Let

E0 := {(x, y, z) ∈ R3 | y = 0}

be the x-z-plane. Let α := 2π
n (then 0 < α ≤ π

4
as n ≥ 8) and let

Eα := {(x, y, z) ∈ R3 | y = x tanα}
~nα := (− sinα, cosα, 0).

The planes Eα and E0 intersect in the z-axis.
The angle between them is α. The vector ~nα is
a normal vector to the plane Eα.
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III. Suppose a regular tetrahedron T (notations as in I.) is positioned as follows:

i) A,B, P,Q lie in the x-y-plane

ii) A,B, P ∈ E0

iii) C,D,Q ∈ Eα

vi) C,D,Q have positive y-coordinate

Because of 0 < α ≤ π
4 and (1) such a tetrahedron exists and is uniquely determined (for given

h).
In addition A has positive x-coordinate, as

AP =
s

2
=
h

2

√
2 < h ≤ h

tanα
=

PQ

tanα
= OP

(because of 0 < α ≤ π
4 we have 0 < tanα ≤ 1).

We also note:

the vectors −→
AB, ~nα,

−→
CD form a right-handed system, (3)

the vectors −→
AB,

−→
CD,

−→
QP form a right-handed system (4)

In V. we will see that a tetrahedron positioned as above can be rotated around the axis PQ
without violating conditions ii),iii) and iv) (the points P und Q, however, move within the planes
E0 and Eα then).

IV. Besides n ≥ 8 let n be even. Reflecting the
tetrahedron T about the plane Eα yields another
tetrahedron T2, that shares vertices C and D
with T . By successively rotating T and T2 about
the z-axis by angle 2α further tetrahedra are ob-
tained (altogether n tetrahedra) that form (be-
cause of n even and α = 2π

n ) a closed ring (every
two neighbouring tetrahedra share one common
edge). This ring is called a regular kaleidocycle.
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V. Now we show how a tetrahedron T can be rotated within the delimiting planes E0 und Eα
such that conditions ii),iii) and iv) from III. remain fulfilled. Then by symmetry it follows that
a ring of tetrahedra assembled as in IV. can be inverted (while the property that neighbouring
tetrahedra share one common edge is preserved).

We choose the parameter t ∈ [0, 2π[ to describe the rotation of the tetrahedron T in the sense
that t specifies the actual angle between −→AB and the positive x-axis.
By At, Bt, Ct, Dt, Pt, Qt we denote the positions of the corresponding points at time t ∈ [0, 2π[.
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Thus

~u :=
−−→
AtBt

‖−−→AtBt‖
=

 cos t
0

sin t

 ∈ E0.

By (1), (3) we obtain (× denotes the cross product of vectors)

~v :=
−−→
CtDt

‖−−→CtDt‖
=

1
‖~u× ~nα‖

(~u× ~nα)

=
1√

sin2 t+ cos2 t cos2 α

 − sin t cosα
− sin t sinα
cos t cosα

 =
1√

1 + sin2 t tan2 α

 − sin t
− sin t tanα

cos t

 ∈ Eα

Furthermore let

~w := −(~u× ~v)

=
1√

sin2 t+ cos2 t cos2 α

 − sin2 t sinα
cosα

sin t cos t sinα

 =
1√

1 + sin2 t tan2 α

 − sin2 t tanα
1

cos t sin t tanα


(it is ‖~w‖ = 1).

By (1) and (4) it is h~w = −−→PtQt = Qt − Pt, which we may write as

h

 w1

w2

w3

 =

 q1

q2

q3

−
 p1

p2

p3

 .

Considering Pt ∈ E0 and Qt ∈ Eα (i.e. p2 = 0 and q2 = q1 tanα) we obtain

q2 = hw2, q1 = h
w2

tanα
, p1 = q1 − hw1 = h(

w2

tanα
− w1).

We require that the center M of [PtQt] always remains in the x-y-plane. As q3 and w3 have the
same sign, it follows

q3 = −p3 = h
w3

2
.

Altogether we have (with w as above)

Pt = h

 w2
tanα − w1

0
−w3

2

 ∈ E0, Qt = h

 w2
tanα
w2
w3
2

 ∈ Eα

and At, Bt, Ct, Dt are given as

At = Pt −
h

2

√
2~u, Bt = Pt +

h

2

√
2~u,

Ct = Qt −
h

2

√
2~v, Dt = Qt +

h

2

√
2~v.
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In particular A,B ∈ E0 and C,D ∈ Eα.

VI. Another possibility to describe the position of the tetrahedron at time t is given by the
affine transformation

Φt : R
3 → R

3 x
y
z

 7→
 u1 w1 v1

u2 w2 v2

u3 w3 v3

 x
y
z

+ h

 w2
tanα −

w1
2

w2
2
0


By Φt all points of a tetrahedron, such that its center is the origin and such that

−→
AB

‖−→AB‖
=

 1
0
0

 ,

−→
PQ

‖−→PQ‖
=

 0
1
0

 ,

−→
CD

‖−→CD‖
=

 0
0
1

 ,

are mapped onto corresponding points of a tetrahedron that lies in the desired position for time
t.

VII. We have assumed n even and n ≥ 8. For n ≤ 6 no twistable regular kaleidocycle exists:

Consider a kaleidocycle of n tetrahedra (n even)
at time t = 0. Let p1 be the x-coordinate of P .
Obviously

p1 ≥
s

2
=
h

2

√
2

must hold, because otherwise several tetrahedra
would intersect in the origin.
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Now p1 = h
tanα and as α = 2π

n we obtain the condition

tan
2π
n
≤
√

2

which for even n is only valid for n ≥ 8. It follows that kaleidocycles consisting of regular
tetrahedra must have at least 8 components in order to be rotatable. A regular kaleidocycle
with 6 tetrahedra can be assembled, but it cannot be brought to the position t = 0 and therefore
cannot be rotated completely. And that at least 6 tetrahedra are needed to build a kaleidocycle
is obvious.

In the case n = 6, however, it is possible to have rotatable kaleidocycles, when irregular tetra-
hedra are used. More on that in the next section.
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Normal kaleidocycles

VIII. Based on the previous section that dealt with regular kaleidocycles we show in the fol-
lowing how a whole class of kaleidocycles can be defined by introducing certain parameters.

We use the same notation as before. In particular let n be even and n ≥ 6, and α = 2π
n .

We have seen that the positions of the vertices A,B,C,D (we now omit the indices t) of a regular
tetrahedron in a regular kaleidocycle are determined by the positions of the points P and Q as
well as the vectors ~u and ~v (which in turn represent the directions of the vectors −→AB and −→CD):

A = P − h
√

2
2
~u, B = P +

h
√

2
2
~u,

C = Q− h
√

2
2
~v, D = Q+

h
√

2
2
~v.

The normed vectors ~u and ~v were scaled with h
√

2
2 , so that ABCD is a regular tetrahedron.

If we instead set

A = P − λ~u, B = P + µ~u,

C = Q− κ~v, D = Q+ ν~v.

with arbitrary (λ, µ, κ, ν) ∈ R4, then ABCD is
still a (not necessarily regular) tetrahedron with

A,B ∈ E0,

C,D ∈ Eα.

By placing further tetrahedra that are equiva-
lent to ABCD in the same manner as in IV. we
again obtain a closed ring where neighbouring
tetrahedra share one common edge.
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In order for such a kaleidocycle to be rotatable, we must have

|λ|, |µ|, |κ|, |ν| ≤ h

tanα

(otherwise there are positions of the kaleidocycle for which several tetrahedra intersect in the
origin, see VII.)

Within this restriction for the parameters there are still different configurations that essentially
yield the same kaleidocycle ( the configurations (λ, µ, κ, ν), (κ, ν, λ, µ) and (µ, λ, ν, κ) for example
are essentially the same). Therefore we further restrict the ranges of the parameters. It is easily
seen that the following definition covers all essentially different configurations:

A kaleidocycle with n components that by symmetry is built from one tetrahedron ABCD with

A = P − λ~u, B = P + µ~u,

C = Q− κ~v, D = Q+ ν~v.
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where
λ, κ ∈ [0,

h

tanα
], µ ∈ [−λ, λ], ν ∈ [−κ, κ],

is called a normal kaleidocycle. Notation: Kn(λ, µ, κ, ν).

Remark: By the definition of P,Q, ~u,~v tetrahedra that are components of normal kaleidocycles
have the following (in our context crucial) property: two opposite edges AB and CD and their
common perpendicular are pairwise orthogonal. (see (1)).

Special kaleidocycles

Using the parameters n, λ, κ, µ, ν a varity of different forms and types of kaleidocycles can be
designed. We want to conclude by mentioning some special configurations that are of interest
because the corresponding kaleidocycles have additional geometrical properties.

IX. For λ = µ, κ = ν we obain isosceles kaleidocycles, i.e. all faces of these kaleidocycles are
isosceles triangles. This includes

• regular kaleidocycles with the configuration n ≥ 8, λ = µ = κ = ν = h
2

√
2 (treated above),

• closed kaleidocycles with the configuration λ = µ = κ = ν = h
tanα , that have the property

that at time t = 0, t = π
2 , t = π, t = 3π

2 vertices of several tetrahedra meet in the origin
and thus the ”eye” of the ring closes in these positions.

X. For µ = ν = 0 right-angled kaleidocycles are obtained, i.e. all faces are right triangles. Worth
mentioning is the so called

• invertible cube defined by the configuration n = 6, λ = µ = h
tanα , µ = ν = 0. The name

comes from the fact that at time t = arccos
√

2
3 this kaleidocycle becomes a cube by

lengthening edges AB and CD (as well as corresponding edges of the other tetrahedra).
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