Utilisation de Géoplan pour conjecturer et résoudre un problème

Soit un triangle ABC rectangle isocèle en A tel que AB = AC = 6. M est un point mobile du segment [AB] tel que AM = x avec $x \in [0;6]$ M varie sur le segment [AB] et on construit le rectangle AMNP tel que $N \in [BC]$ et $P \in [AC]$. On veut étudier les variations de l'aire A du rectangle AMNP lorsque M se déplace sur [AB] Pour cela, on introduit une fonction f associant à x l'aire A.

1. Construction de la figure avec Géoplan

Lancer le logiciel géoplan-geospace^{seoplan-Geos.} puis selectionner

	Geopla	ın-Geo	space -	[C:\DO0	CUME~1	\didie	r\Bu	
×	Fichier	Créer	Piloter	Afficher	Divers	Editer	Fené	
Nouvelle figure du plan								
4	Nouvelle figure de l'espace							
x :	Ouvrir une figure du plan							
Ouvrir une figure de l'espace								
	Enre	Enregistrer						
	Enre	Enregistrer sous						

On va d'abord construire un triangle ABC rectangle isocèle en A

Pour cela on construit les points A(-3 ;-2) B(3 ;-2) et C(-3 ;4) Pour créer ces points avec Géoplan il faut :

📱 Fichier	Créer	Piloter	Afficher	Divers	Editer	Vues	Fenêtre	Aide	Options
23	Poin	t	۱.	Point l	ibre				
	Lign	е	•	Point	repéré		•	Dans	l'espace
	Plan	I	•	Inters	ection 2	droites		Dans	un plan
	Tran	nsformati	ion 🕨	Inters	ection dr	roite-pla	an T	Sur u	ne droite
Point repéré d	lans le plar		\						
Abscisse: - Ordonnée: - Nom du poix	3 2 nt:	A	I						
A : Aide	- Ann	ulor	0k						

Pour le p

bis Pour les points B et C recommencer en cliquant sur Une fois les points crées il faut définir le triangle ABC pour cela

_				$\overline{\mathcal{U}}$		1			
	Créer	Piloter	Afficher	Divers	Editer	Fer	nêtre	Aide	Options
I	Poir	it	•	lini	11 100	1.	ie M		Tsi
J	Lign	e	•	Droite	(s)	•		D	
	Tra	nsformat	ion 🕨	Demi-o	droite(s)	•			
	Nun	nérique	•	Segme	ent(s)	•			
	Rep	ère		Cercle		•			
	Unit	é de long	gueur	Arc de	cercle	•			
	Vec	teur	•	Courb	e	•		(3
	Dem	ni-plan	•	Recta	ngle				•
	Cad	ra		Polygo	one	•	Pol	ygone	défini par ses sommets
		10]			_	Ré	gulier a	vec centre et sommet
	Affi	rhade					_		

On appellera le polygone ABC.

On va créer un point M variable sur le segment [AB]

Vous pouvez remarquer qu'on peut déplacer le point en maintenant enfoncé le bouton gauche de la souris.

On va construire le rectangle AMNP

-Définir la droite (d) parallèle à (AC) et passant par M :

On appellera le rectangle AMNP

-On va maintenant définir l'aire du rectangle AMNP

(on ne peut pas le faire directement donc on va la définir comme 2 fois l'aire du triangle AMN)

Créer Piloter Afficher	Divers Editer Fenêtre Aide Options	
Point Ligne	📘 🔂 👬 🖸 bis 🌇 🐂 🍱	
Transformation		_
Numérique 🕨 🕨	Variable réelle libre dans un intervalle	
Repère	Variable réelle libre	
Unité de longueur Vecteur Demi-plan	Variable entière libre dans un intervalle Variable entière libre	
Codro	Calcul géométrique 🔶 🕨	Longueur d'un segment
	Calcul algébrique	Rayon d'un cercle
Affichage 🕨 🕨	Fonction numérique	Coefficient directeur
Commande 🕨 🕨	Suite non récurrente	Aire d'un triangle

On appellera l'aire A1

On calcule l'aire du rectangle en faisant : créer, numerique, puis calcul algébrique.

Calcul alg	ébrique
	Expression du calcul:
2A1	
	Nom du calcul: A2

Remarque : Le calcul de l'aire du rectangle AMNP est A2

-On va afficher à l'écran x et le calcul de l'aire du rectangle A2 Créer, numérique, calcul géométrique, longueur x du segment [AM] Créer, affichage, d'une variable numérique déjà définie

Annenage de la valear à ane variable nameriq	ue deja denn
Nom de la variable numérique:	A2
Nombre de décimales (0 à 6): 2	
Nom de l'affichage:	Af1

Puis cliquer sur bis et afficher x

<u> </u>	1 /1				
	Affichage	e de	la valeur d'une variable n	umérique déjà défini	e
	Nom de	1 a	variable numérique:	x	
	Nombre	de	décimales (0 à 6):	2	E

Déplacer le point M et déterminer une valeur approchée de x pour que l'aire A2 soit maximale. Existe-t-il une valeur de x pour laquelle l'aire de AMNP est égal à 8.

Remarque : pour piloter M avec le clavier , allez dans

1	Piloter	Afficher	Divers	Editer	Fenêtre	Aid		
I	Piloter au clavier							
	Modifier paramètres de pilotage au clavier							

Vous pouvez modifier le pas du pilotage pour avoir plus de précision prenez un pas de 0.001

Modifier les paramètres de pilotage						
Variable concernée : M						
Modifiable par les touches + et - Oui - unité: Jongueur du segment [AB -						
Pas du pilotage: 0.001						

2. Construction de la courbe de la fonction qui à x associe l'aire du rectangle notée A2

- Cliquer sur fichier, nouvelle figure dans le plan

- Cliquer sur fenêtre mosaïque verticale

-Cliquer sur repère : -Créer, numérique, variable réelle libre et définir x

Cliquer sur **bis** -définir A2 -créer, un point, repéré dans le plan

Point repéré dans le plan					
Abscisse: X					
Ordonnée: A2					
Nom du point:	Q				

-cliquer sur piloter puis importer

Sur l'autre feuille si vous déplacer M sur [AB] vous devez voir Q se déplacer. Nous avons maintenant afficher la trace Q c'est la dire la courbe de la fonction A2 Cliquer sur la feuille où il y a le repère puis

1 5		1 1						
			Afficher	Divers	Editer	Fené		
			Sélecti	ion trace				
Puis sélectionner le point Q								
	🔲 Sé	Sélection trace						
		C)k	ļ,	Innule	r	Aide	
	Qp	oint	de coo	rdonn	ées (x, A,)	dans le	
	<u> </u>							

Cliquer sur **I** pour afficher la trace de Q puis déplacer le point M sur l'autre feuille.

Déterminer la valeur de x pour laquelle l'aire est maximale.

3. Partie Théorique pour justifier les conjectures émises à l'aide de Géoplan.

- 1. Calculer la longueur MN en fonction de x.
- 2. On appelle f la fonction qui à x associe l'aire de AMNP Démontrer que $f(x) = -x^2+6x$.
- 3. Vérifier que $f(x) = -[(x-3)^2-9]$
- 4. Démontrer que f admet un maximum que l'on déterminera.
- 5. Résoudre l'équation $x^2+6x+8=0$ (on utilisera que 8 = 9-1)
- 6. Existe-t-il des valeurs de x pour lesquelles l'aire est égale à 8 ?

Document élaboré par un collègue du Lycée Gérard Philipe de Bagnols (30)